基于事件的视觉传感器基于视觉场景的变化产生具有高时间分辨率的异步事件流。随着事件的生成,这些传感器的特性允许精确快速地计算光学流量。对于从事件数据计算光学流的现有解决方案未能由于孔径问题而无法捕获真正的运动方向,请勿使用传感器的高时间分辨率,或者在嵌入式平台上实时运行太昂贵。在这项研究中,我们首先提供了我们之前的算法,武器(光圈稳健的多尺度流)的更快版本。新的优化软件版本(农场)显着提高了传统CPU的吞吐量。此外,我们呈现危害,一种农场算法的硬件实现,允许实时计算低功耗,嵌入式平台上的真实流量。建议的危害架构针对混合系统的片上器件,旨在最大限度地提高可配置性和吞吐量。硬件架构和农场算法是用异步的神经形态处理而开发的,放弃了事件帧的常用使用,而是仅使用不同事件的小历史运行,允许独立于传感器分辨率进行缩放。与现有方法相比,处理范例的这种变化将流量方向的估计变为高达73%,并在选择的基准配置上显示出危害最高为1.21 Mevent / s的危害。此吞吐量使实时性能能够实现迄今为止迄今为止最快速的基于活动的事件的光流的实现。
translated by 谷歌翻译
Traditionally, data analysis and theory have been viewed as separate disciplines, each feeding into fundamentally different types of models. Modern deep learning technology is beginning to unify these two disciplines and will produce a new class of predictively powerful space weather models that combine the physical insights gained by data and theory. We call on NASA to invest in the research and infrastructure necessary for the heliophysics' community to take advantage of these advances.
translated by 谷歌翻译
Plastic shopping bags that get carried away from the side of roads and tangled on cotton plants can end up at cotton gins if not removed before the harvest. Such bags may not only cause problem in the ginning process but might also get embodied in cotton fibers reducing its quality and marketable value. Therefore, it is required to detect, locate, and remove the bags before cotton is harvested. Manually detecting and locating these bags in cotton fields is labor intensive, time-consuming and a costly process. To solve these challenges, we present application of four variants of YOLOv5 (YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x) for detecting plastic shopping bags using Unmanned Aircraft Systems (UAS)-acquired RGB (Red, Green, and Blue) images. We also show fixed effect model tests of color of plastic bags as well as YOLOv5-variant on average precision (AP), mean average precision (mAP@50) and accuracy. In addition, we also demonstrate the effect of height of plastic bags on the detection accuracy. It was found that color of bags had significant effect (p < 0.001) on accuracy across all the four variants while it did not show any significant effect on the AP with YOLOv5m (p = 0.10) and YOLOv5x (p = 0.35) at 95% confidence level. Similarly, YOLOv5-variant did not show any significant effect on the AP (p = 0.11) and accuracy (p = 0.73) of white bags, but it had significant effects on the AP (p = 0.03) and accuracy (p = 0.02) of brown bags including on the mAP@50 (p = 0.01) and inference speed (p < 0.0001). Additionally, height of plastic bags had significant effect (p < 0.0001) on overall detection accuracy. The findings reported in this paper can be useful in speeding up removal of plastic bags from cotton fields before harvest and thereby reducing the amount of contaminants that end up at cotton gins.
translated by 谷歌翻译
There is considerable interest in predicting the pathogenicity of protein variants in human genes. Due to the sparsity of high quality labels, recent approaches turn to \textit{unsupervised} learning, using Multiple Sequence Alignments (MSAs) to train generative models of natural sequence variation within each gene. These generative models then predict variant likelihood as a proxy to evolutionary fitness. In this work we instead combine this evolutionary principle with pretrained protein language models (LMs), which have already shown promising results in predicting protein structure and function. Instead of training separate models per-gene, we find that a single protein LM trained on broad sequence datasets can score pathogenicity for any gene variant zero-shot, without MSAs or finetuning. We call this unsupervised approach \textbf{VELM} (Variant Effect via Language Models), and show that it achieves scoring performance comparable to the state of the art when evaluated on clinically labeled variants of disease-related genes.
translated by 谷歌翻译
In this paper, we propose a new approach to learned optimization. As common in the literature, we represent the computation of the update step of the optimizer with a neural network. The parameters of the optimizer are then learned on a set of training optimization tasks, in order to perform minimisation efficiently. Our main innovation is to propose a new neural network architecture for the learned optimizer inspired by the classic BFGS algorithm. As in BFGS, we estimate a preconditioning matrix as a sum of rank-one updates but use a transformer-based neural network to predict these updates jointly with the step length and direction. In contrast to several recent learned optimization approaches, our formulation allows for conditioning across different dimensions of the parameter space of the target problem while remaining applicable to optimization tasks of variable dimensionality without retraining. We demonstrate the advantages of our approach on a benchmark composed of objective functions traditionally used for evaluation of optimization algorithms, as well as on the real world-task of physics-based reconstruction of articulated 3D human motion.
translated by 谷歌翻译
We study the fundamental task of outlier-robust mean estimation for heavy-tailed distributions in the presence of sparsity. Specifically, given a small number of corrupted samples from a high-dimensional heavy-tailed distribution whose mean $\mu$ is guaranteed to be sparse, the goal is to efficiently compute a hypothesis that accurately approximates $\mu$ with high probability. Prior work had obtained efficient algorithms for robust sparse mean estimation of light-tailed distributions. In this work, we give the first sample-efficient and polynomial-time robust sparse mean estimator for heavy-tailed distributions under mild moment assumptions. Our algorithm achieves the optimal asymptotic error using a number of samples scaling logarithmically with the ambient dimension. Importantly, the sample complexity of our method is optimal as a function of the failure probability $\tau$, having an additive $\log(1/\tau)$ dependence. Our algorithm leverages the stability-based approach from the algorithmic robust statistics literature, with crucial (and necessary) adaptations required in our setting. Our analysis may be of independent interest, involving the delicate design of a (non-spectral) decomposition for positive semi-definite matrices satisfying certain sparsity properties.
translated by 谷歌翻译
Recent studies suggest that early stages of diabetic retinopathy (DR) can be diagnosed by monitoring vascular changes in the deep vascular complex. In this work, we investigate a novel method for automated DR grading based on optical coherence tomography angiography (OCTA) images. Our work combines OCTA scans with their vessel segmentations, which then serve as inputs to task specific networks for lesion segmentation, image quality assessment and DR grading. For this, we generate synthetic OCTA images to train a segmentation network that can be directly applied on real OCTA data. We test our approach on MICCAI 2022's DR analysis challenge (DRAC). In our experiments, the proposed method performs equally well as the baseline model.
translated by 谷歌翻译
This paper presents a subsampling-task paradigm for data-driven task-specific experiment design (ED) and a novel method in populationwide supervised feature selection (FS). Optimal ED, the choice of sampling points under constraints of limited acquisition-time, arises in a wide variety of scientific and engineering contexts. However the continuous optimization used in classical approaches depend on a-priori parameter choices and challenging non-convex optimization landscapes. This paper proposes to replace this strategy with a subsampling-task paradigm, analogous to populationwide supervised FS. In particular, we introduce JOFSTO, which performs JOint Feature Selection and Task Optimization. JOFSTO jointly optimizes two coupled networks: one for feature scoring, which provides the ED, the other for execution of a downstream task or process. Unlike most FS problems, e.g. selecting protein expressions for classification, ED problems typically select from highly correlated globally informative candidates rather than seeking a small number of highly informative features among many uninformative features. JOFSTO's construction efficiently identifies potentially correlated, but effective subsets and returns a trained task network. We demonstrate the approach using parameter estimation and mapping problems in clinically-relevant applications in quantitative MRI and in hyperspectral imaging. Results from simulations and empirical data show the subsampling-task paradigm strongly outperforms classical ED, and within our paradigm, JOFSTO outperforms state-of-the-art supervised FS techniques. JOFSTO extends immediately to wider image-based ED problems and other scenarios where the design must be specified globally across large numbers of acquisitions. Code will be released.
translated by 谷歌翻译
诸如DALL-E 2之类的生成模型可以代表放射学中人工智能研究的图像生成,增强和操纵的有希望的未来工具,前提是这些模型具有足够的医疗领域知识。在这里,我们证明DALL-E 2在零拍的文本到图像生成方面,学习了具有有希望的功能的X射线图像的相关表示,将图像的延续超出其原始边界或删除元素,尽管病理产生或CT,MRI和超声图像仍然受到限制。因此,即使事先需要对这些模型进行进一步的微调和适应,也需要使用生成模型来增强和生成放射学数据似乎是可行的。
translated by 谷歌翻译
在整个计算科学中,越来越需要利用原始计算马力的持续改进,通过对蛮力的尺度锻炼的尺度增加,以增加网状元素数量的增加。例如,如果不考虑分子水平的相互作用,就不可能对纳米多孔介质的转运进行定量预测,即从紧密的页岩地层提取至关重要的碳氢化合物。同样,惯性限制融合模拟依赖于数值扩散来模拟分子效应,例如非本地转运和混合,而无需真正考虑分子相互作用。考虑到这两个不同的应用程序,我们开发了一种新颖的功能,该功能使用主动学习方法来优化局部细尺度模拟的使用来告知粗尺度流体动力学。我们的方法解决了三个挑战:预测连续性粗尺度轨迹,以推测执行新的精细分子动力学计算,动态地更新细度计算中的粗尺度,并量化神经网络模型中的不确定性。
translated by 谷歌翻译